The
 FOOTING TUBE

TECHNICAL SPECIFICATIONS

Height inches	6^{11} Deck Tube	$\begin{aligned} & 8^{8 \prime \prime} \\ & \text { Footing } \\ & \text { Tube } \end{aligned}$	10/12" Footing Tube
64"	Maximum 8' load bearing for the deck tube		10"
62"		8"	12"
60"		8.24"	12.28"
58"		8.48"	$12.56{ }^{\prime \prime}$
56"		8.72"	12.84"
54"	6"	8.96"	13.12"
52"	6.24"	9.2"	13.40"
50"	6.48"	$9.44{ }^{\prime \prime}$	13.68"
48"	6.72"	$9.68{ }^{\prime \prime}$	13.96"
$46 "$	6.96"	9.92"	14.24"
44"	7.20"	10.16"	14.52"
42"	$7.44{ }^{\prime \prime}$	10.4"	14.80"
40"	7.68"	10.64"	15.08"
38'	7.92"	10.88"	15.36"
36"	8.16"	11.12"	15.64"
Base outside	14"	24"	$24^{\prime \prime}$
Base inside	12.50"	21.75"	21.75"
Volume	$\begin{gathered} 2.3 \mathrm{ft}^{3} \\ .065 \mathrm{~m}^{3} \end{gathered}$	$\begin{gathered} 4.8 \mathrm{ft}^{3} \\ .136 \mathrm{~m}^{3} \end{gathered}$	$\begin{aligned} & 8.5 \mathrm{ft}^{3} \\ & .24 \mathrm{~m}^{3} \end{aligned}$

> Based on the National Building Code of Canada (1995) "Part 9.4.4.1. Allowable Bearing Pressures", the following table calculates the load bearing capability of the differing soils that the pier may be placed on.
> (Using concrete base area for respective tubes on inner flange for the calculation.)

Soil Description	Allowable Bearing pressure kPa=psi	6" Deck Tube $\mathbf{1 2 3 i n}^{2}$ base	$8 "$ \& 10/12" Footing Tube 371 in² base
Dense or compact sand or gravel	$150=21.75$	$2675 \mathrm{lb} /$ tube	$8069 \mathrm{lb} /$ tube
Loose sand or gravel	$50=7.25$	$891 \mathrm{lb} /$ tube	$2690 \mathrm{lb} /$ tube
Dense or compact silt	$100=14.5$	$1783 \mathrm{lb} /$ tube	$5380 \mathrm{lb} /$ tube
Stiff clay	$150=21.75$	$2675 \mathrm{lb} /$ tube	$8069 \mathrm{lb} /$ tube
Firm clay	$75=10.88$	$1338 \mathrm{lb} /$ tube	$4036 \mathrm{lb} /$ tube
Soft clay	$40=5.8$	$713 \mathrm{lb} /$ tube	$2152 \mathrm{lb} /$ tube
Till	$200=29$	$3567 \mathrm{lb} /$ tube	$10761 \mathrm{lb} /$ tube
Clay shale	$300=43.5$	$5350 \mathrm{lb} /$ tube	$16139 \mathrm{lb} /$ tube
Sound bedrock	$500=72.5$	$8917 \mathrm{lb} /$ tube	$26898 \mathrm{lb} /$ tube

Please be advised that the load-bearing table is based on the Allowable Soil Bearing Pressure.
The concrete to be placed in the tubes is to have a minimum compressive strength of $3000 \mathrm{psi}(20.7 \mathrm{MPa})$ at 28 days and to be poured per the National Building Code of Canada (1995) standards.

Please verify all load bearing requirements with the local building officials or a qualified engineer.

Prepared: November, 2001 Modified: January, 2004

The
 FOOTING TUBE

Formula to Calculate Loads of Buildings

Deck Forminla: (Max 8'load bearing capacity with deck tube)
deck joist length to
centre of beam in lin.ft.
$\div 2+$ \qquad X (\qquad $+$ \qquad $)=$
 $=$ \qquad

Floor Formula:

Roof Formula:

Exterior wall weight at $100 \mathrm{lbs} /$ lin.ft. $\mathrm{X} \underset{\begin{array}{c}\text { lin.ff. } \\ \text { supported }\end{array}}{ }=\frac{\begin{array}{c}\text { weight in lss-wall } \\ \text { loadside }\end{array}}{}$

Total load to be supported by piers $=$ \qquad $\mathrm{lbs} \div \frac{}{}=$ $=\gg \begin{gathered}\text { \# of tubes } \\ \text { required }\end{gathered}$

